(RE)USING HORTICULTURAL PEAT IN ESTONIA. A STUDY ON CURRENT PRACTICES, POTENTIAL FOR CIRCULARITY AND GHG FLUXES

AIN KULL & MARTIN KÜTTIM

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D.C.

THE DECOMPOSITION OF HYDROLYTIC PEAT PRODUCTS INCLUDING AMMONIATED PEAT

By I. C. FEUSTEL, assistant chemist, and H. G. BYERS, principal chemist, Division of Soil Chemistry and Physics, Soil Investigations, Bureau of Chemistry and Soils

CONTENTS

	Page	Ammoniated peat—Continued.	Page
Introduction	1	Ammoniated peat—Continued. Effect of volume of ammonium hydrox-	
Review of literature	$\bar{2}$	ide	20
Decomposition of peat	5	Effect of time and temperature of heat-	
Methods and apparatus	5	ing	21 22
Preparation of samples		Pot experiments	22
Results	9	Discussion	28 30
Ammoniated peat	17	Summary	
Preparation of material		Literature cited	31
Quantity of nitrogen absorbed	18		
Effect of concentration of ammonium			
hydroxide	19		

INTRODUCTION

Numerous studies have been made on the decomposition of various materials by soil microorganisms. Considerable information is available concerning the decomposition of fresh plant material added to the soil as green manure, and it has been found that such material undergoes rapid decomposition. This is presumably because it contains relatively large proportions of readily decomposable substances consisting chiefly of simple and complex carbohydrates, amino acids, certain proteins, etc. Such decompositions are apparently accompanied by an increase of the proportions of ligninlike materials in the residues. How carbon is pooled in soil, what happens with carbon in soil, peat or substrate over the time and management?

All new is a well forgotten old or...

... problems tend just to persist over the time.

LULUCF or time for LULUCF⁺?

Off-site GHG emissions

On-site GHG emissions

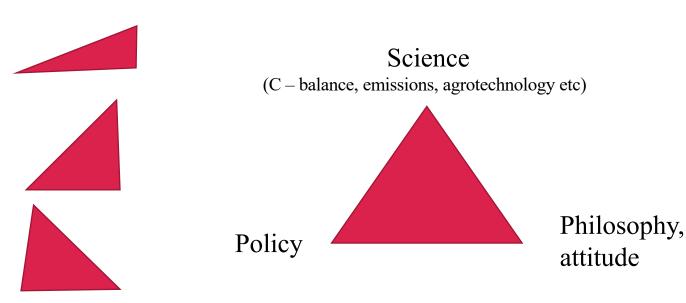
Knowledge level: satisfactory <u>Improvement possibilities:</u> Better accounting for actual peat properties, land use (ditches, roads, buffering zone), accounting for actual harvesting process, country-based factors considering weather etc.

Fuel = 100% C loss

Substrate = ? % loss

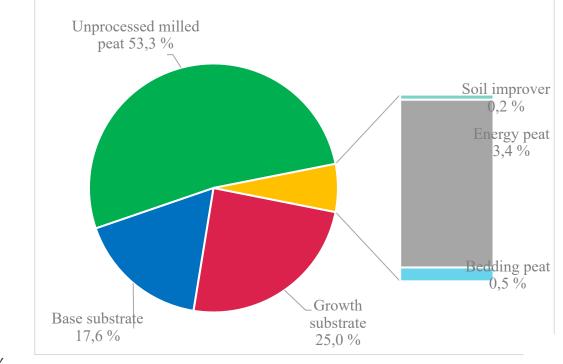
Animal husbandry = ? % loss

Knowledge level: low

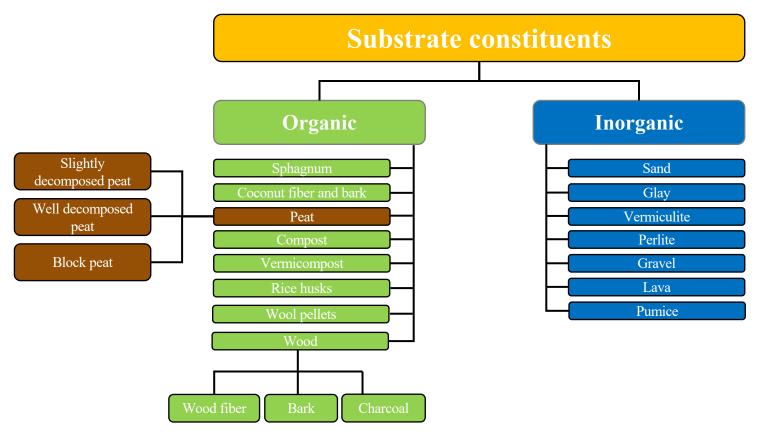

Improvement possibilities:

More accurate accounting for substrate use Timeframe

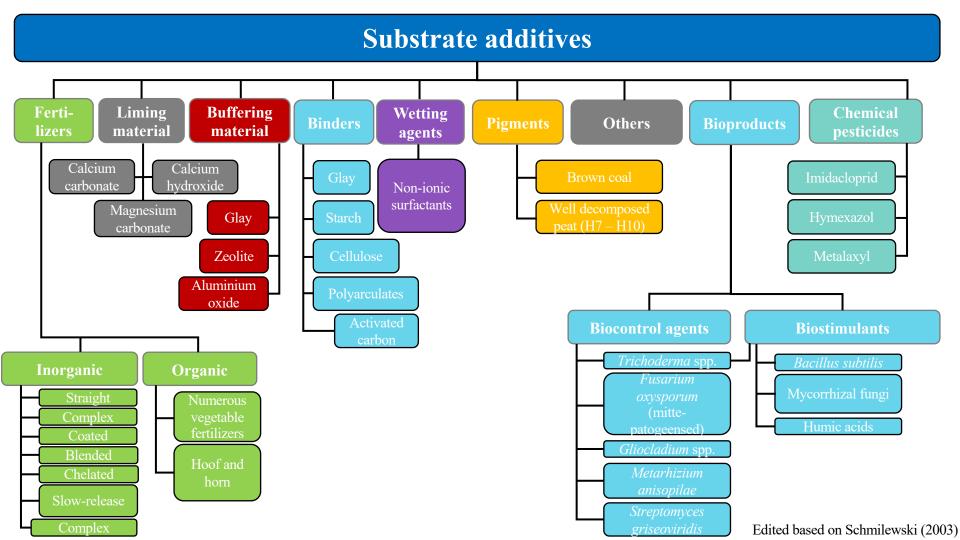
Reuse, recycling, circular economy effects

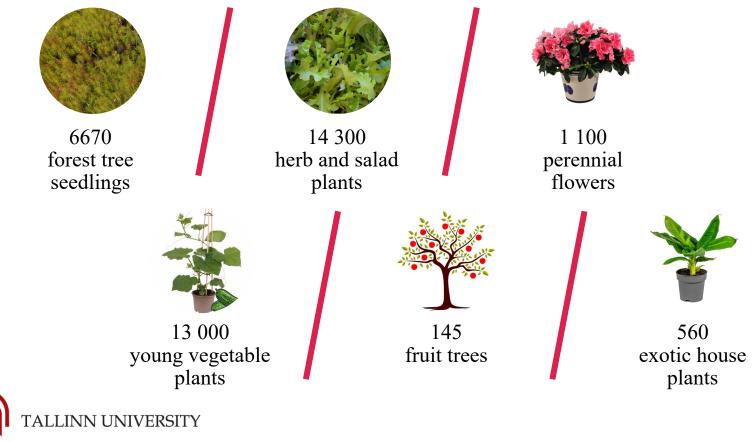

How to quantify off-site emissions?

- What is the actual use of produced peat?
- What is the emission factor of substrate?
- What happens with carbon, where and when?


What happens if 1 g of used peat-C will produce CO_2 emissions but final C output is > 1 g? Who is responsible for emissions, who gets credit for C capture?

SALE OF PEAT EXTRACTED IN ESTONIA 2022





INGREDIENTS OF SUBSTRATES

Organic ingredients	m ³	Inorganic ingredients	m ³
Slightly decomposed peat	1491	Perlite	10,3
Well decomposed peat	126	Expanded clay	1,0
Block peat	24	Sand and loam	5,8
Coconut fiber	5	Ground limestone	2,5
Wood bark	1	Chalk	0,2
Wood fiber	10	Multimix NPK	0,1
Compost	2,2	Vermiculite	0,01
Charcoal	0,4	Pumice	1,2

ON 1 M³ OF PEAT CAN BE GROWN:

FOREST TREES

- Species:
 - Scots pine
 - Norway spruce
 - Silver birch etc

- Additives
 - NPK fertilizer (1 kg/m³)
 - Wetting agent (eg Fiba-Zorb)
 - Slow-release fertilizers (eg Osmocote)
 - Vermiculite, sand or sawdust for cover

- Species:
 - Cucumber
 - Cabbage
 - Other young plants

- Additives
 - NPK fertilizer
 - Chalk
 - pH 5,6 6,5

- Potting
 - ~70 cm³ pots
 - 1-1,5 months
 - After potting planted to field

- Species
 - Bleeding-hearts
 - Dahlias
 - Many others

- Additives
 - Slow-release fertilizers
 - Perlite or glay
 - pH 5,5 6,0

- Potting
 - ~1 litre pots
 - -2-6 months

O R N A M E N T A L A N D F R U I T T R E E S

- Species:
 - Apples, pears
 - Chrerries, currants
 - Cypresses

- Additives
 - NPK fertilizer
 - Slow-release fertilizers
 - Stabilizers
 - Limestone powder

- Potting
 - ~7 litre pots/ greenhouse soil
 - -4-5 years
 - pH 3,5–6,0

- Species:
 - Basil, chives, spinach
 - Lettuce and other salads

TALLINN UNIVERSITY

- Additives
 - NPK fertilizer
 - Biological products (eg GlioMix)

- Potting
 - ~70 cm³ pots
 - 1,5 2 months
 - After potting planted to field

- Exotic house plants
 - No industrial production in Estonia
 - Peat used in substrates with other

constituents ALLINN UNIVERSITY

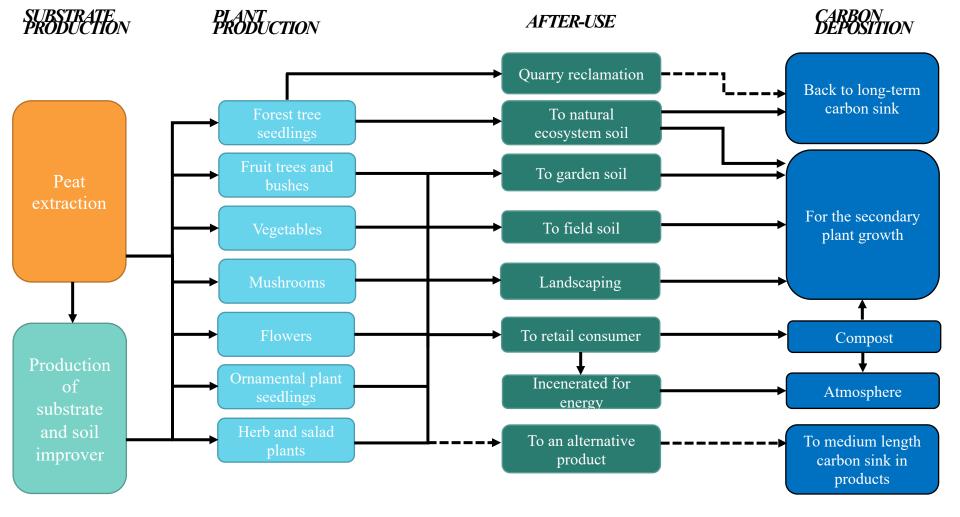
- Botanical gardens
 - Bot.gardens in Tallinn and Tartu use annually 113
 - m^3 together

З. отнег s

- Mushrooms
 - No industrial production in Estonia on peat substrates, only on wood-based substrates

AFTER-USE & CIRCULARITY

Circular economy is an economy and a way of thinking that aims to maintain the value of products and materials as long as possible. Waste are being generated and resources used as little as possible, and when the product reaches to the end of its life cycle, it is used to create a new value.



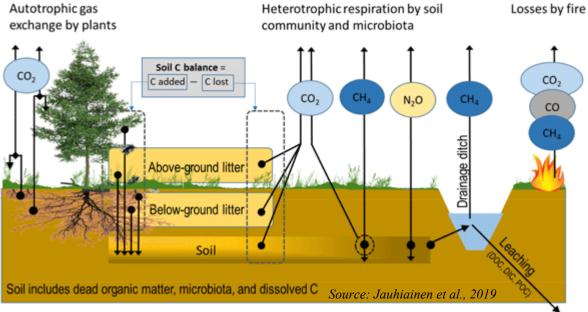
AFTER-USE & CIRCULARITY

R0	Keeldumine	Refuse	Avoiding substrates; peat-free substrates; hydro-/aeroponica
R1	Ümberkujundamine	Rethink	
R2	Vähendamine	Reduce	Smaller amounts of substrates and peat within them; growing less plants
R3	Korduskasutus	Reuse	Repeated use of same substrate (first in greenhouse, then on field)
R4	Parandamine	Repair	
R5	Renoveerimine	Refurbish	
R6	Taastootmine	Remanufacture	Substrate factory collects and adds the used substrate to the new ones
R7	Kasutusotstarbe muutmine	Repurpose	Used substrates are used as a raw material for new ones: isolation materials, active carbon etc
R8	Ringlussevõtt	Recycling	Toilet peat
R9	Energiakasutus	Recover energy	Energy use of used substrates

AFTER-USE & CIRCULARITY

RO	Keeldumine	Refuse	Avoiding substrates; peat-free substrates; hydro-/aeroponica
R1	Ümberkujundamine	Rethink	
R2	Vähendamine	Reduce	Smaller amounts of substrates and peat within them; growing less plants
R3	Korduskasutus	Reuse	Repeated use of same substrate (first in greenhouse, then on field)
R4	Parandamine	Repair	
R5	Renoveerimine	Refurbish	
R6	Taastootmine	Remanufacture	Substrate factory collects and adds the used substrate to the new ones
R 7	Kasutusotstarbe muutmine	Repurpose	Used substrates are used as a raw material for new ones: isolation materials, active carbon etc
R8	Ringlussevõtt	Recycling	Toilet peat
R9	Energiakasutus	Recover energy	Energy use of used substrates

CARBON BALANCE PEAT SUBSTRATE


Horticulture

<u>3 substrates:</u> C-content 42.0% (±1.41); 47.8% (±0.50); 48.4% (±0.55)

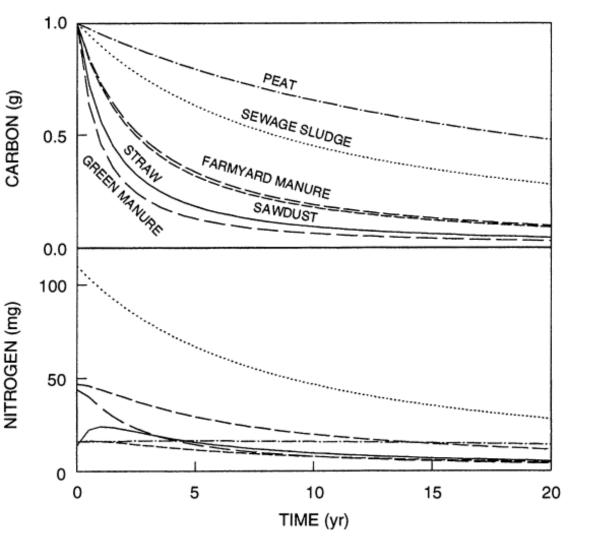
Agriculture

Full balance of C:

Input = substrate + seeds

Growth period = C emission + C capture

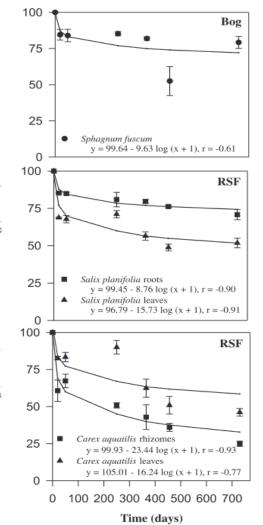
Harvest = below-ground biomass + above ground biomass


Lettuce C balance:

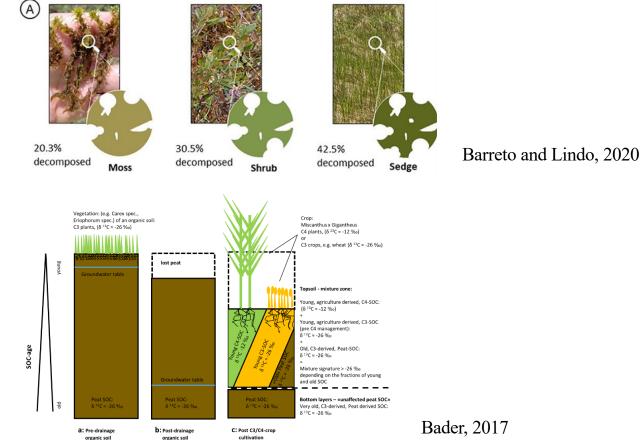
Input 3.2 (± 0.29) g C \longrightarrow growth, emissions \longrightarrow

2.16 g C above ground 1.11 g C below ground 2.12 g C soil (+DOC) Sum = 5.39 g C

All carbon is not equal!


Top: predicted remaining carbon mass following a single addition of organic matter in the long-term field experiment.

Bottom: predicted amount of N in a single addition of organic matter in the long-term field experiment. Hyvonen et al., 1996


Our forest plant nursery experiment

 Input substrate C-content: 48.0% (±0.68)

 After 1 year C-content:
 46.0% (±1.43)

Mass losses ($\% \pm SE$) of the dominant indigenous plant species over 20 and 50 days and 8, 12, 20, and 24 months in two peatlands in southern boreal Alberta. RSF, riverine sedge fen. Thormann et al., 2001

Mass remaining (% ± SE)

INSTEAD OF CONCLUSIONS

- 1 gramm of peat substrate may enable much bigger C uptake
- The key is afterward use and C losses
- Circular economy is possible used substrate may be used in peat extraction site resoration but feasibility is questionable
- Re-use is actually ongoing used substrate is commonly re-used as soil improver. C is stored in topsoil as humus, it improves water retention capacity, increases yield
- Peat substrate for forestry plant nursery if plants will be planted in drained peatlands, what is the C balance?

This study is in its 1st year, it is supported by Estonian Peat Association and Estonian Environmental Investment Centre

FOR FEEDBACK AND IDEAS:

Ain.Kull@ut.ee Martin.Kuttim@tlu.ee

